Stirling Numbers, Bell Numbers, and Integer Partitions
CSC/MAT 208: Discrete Structures
Department of Computer Science
Department of Mathematics and Statistics
Grinnell College

Stirling Numbers

The rule for determining how many class partitions a given class will yield is not immediately obvious—it’s clear that the number of partitions is a function of the cardinality of the class,’ but the nature of the function isn’t immediately apparent even if we consider a few small examples. A one-member class has one partition, a two-member class has two, a three-member class has five, a four-member class has fifteen, a five-member class has fifty-two — what’s the pattern here?)

Let’s consider a combinatorial line of reasoning that could lead us to the pattern. Suppose we have collected all of the partitions for a class \(C \) of cardinality \(n \), and consider what happens when we add a new member \(c \), forming a class \(C \cup \{c\} \) of cardinality \(n+1 \). What happens to the partitions?

There will be some partitions in which the new member is in a new compartment all by itself. (I'll use the term compartment for a subclass of a class \(C \) that is an element of a partition of \(C \).) In fact, there will be exactly one of these for every partition of \(C \), and we can form them just by adjoining the new compartment \(\{c\} \) each one of those partitions in turn.

All of the other partitions of \(C \cup \{c\} \) will be formed by adjoining \(c \) to one of the existing compartments in a partition of \(C \). Within each partition, we have a choice of which compartment to adjoin \(c \) to. Each such choice results in a different partition of \(C \cup \{c\} \). But different partitions of \(C \) have different cardinalities, so the rule of the product doesn’t help us here — the multiplier isn’t constant.

This is an indication that we need to refine the question that we’re asking. We will have to keep track separately of the number of ways in which a class of some cardinality \(n \) can be partitioned into exactly \(k \) mutually exclusive subclasses, for every choice of \(k \) from 1 up to and including \(n \). Let’s call this number \(S(n, k) \).

We can do the small cases by inspection of our lists of partitions:
\[
\begin{align*}
S(1,1) & = 1 \\
S(2,1) & = 1 \\
S(2,2) & = 1 \\
S(3,1) & = 1 \\
S(3,2) & = 3 \\
S(3,3) & = 1 \\
S(4,1) & = 1 \\
S(4,2) & = 7 \\
S(4,3) & = 6 \\
S(4,4) & = 1 \\
\end{align*}
\]

Some aspects of the pattern are pretty obvious. For instance, \(S(n,1) = S(n,n) = 1\), since the only way to get a partition of cardinality 1 is to put all the members of the source class together, in a single compartment, and the only way to get a partition of cardinality \(n\) is to put each member of the source class in its own compartment. But most of the values of the function \(S\) still seem pretty mystifying.

Now, however, we’re ready for that combinatorial argument. Consider \(S(n+1,k+1)\), the number of ways of partitioning a class with \(n+1\) members into \(k+1\) mutually exclusive subclasses. Once again, \(c\) will be our designated “new” member of the class. One way to construct a new partition is to extend one of the \(S(n,k)\) partitions of the class without \(c\) into \(k\) compartments, adding a new, separate compartment containing just \(c\). The other way is to take one of the \(S(n,k+1)\) partitions of the class without \(c\) into \(k+1\) subclasses and put \(c\) into one of the existing compartments. Since each of the partitions has \(k+1\) compartments, and the new element might be added to any of them, we can apply the rule of the product to determine the overall number of partitions constructed in this second way: \((k+1) \cdot S(n,k+1)\). Now we can apply the rule of the sum to get the basic recursion that defines \(S\):

\[
S(n+1,k+1) = S(n,k) + (k+1) \cdot S(n,k+1).
\]

For the base cases, we take \(S(n,n) = 1\) for every natural number \(n\), and \(S(n,0) = 0\) for every positive \(n\).
The values $S(n, k)$ are called Stirling numbers of the second kind, and they show up often in combinatorial counting problems.

Bell numbers

We can now compute the total number of partitions of a class of cardinality n by computing

$$\sum_{k=0}^{n} S(n, k).$$

This is the nth Bell number, conventionally called ϖ_n.

Each Bell number can alternatively be computed from lesser Bell numbers by direct recursion, rather than as a summation of Stirling numbers:

$$\varpi_0 = 1, \quad \varpi_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \cdot \varpi_{n-k}.$$

There is a combinatorial proof for the correctness of the recursion: Every partition of a class $C \cup c$ of cardinality $n + 1$ can be constructed by selecting some number k of members of C, to be placed in the same compartment as the new member c, and then obtaining the other subclasses in the partition by partitioning the remaining $n - k$ members of C. For each choice of k from 0 to n, there are $\binom{n}{k}$ ways of selecting the members of C to be placed in c’s subclass and ϖ_n ways of partitioning the other members of C. The equation now follows by the rules of product and sum.

Integer partitions

An integer partition of a natural number n is a bag of positive integers whose sum is n. For instance, the bag $[3, 3, 2, 2, 1]$ is an integer partition of 11, since $3 + 3 + 2 + 2 + 1 = 11$.

As with class partitions, it is easiest to count the integer partitions of a number n if we break down the results by the size m of the bag (that is, the number of terms in the sum that adds up to n). Our sample integer partition of 11 has size 5, and it is one of ten different integer partitions of 11 that have that size:
Thus, if $I(n, m)$ is the number of size-m integer partitions of n, this exhaustive list shows that $I(11, 5) = 10$.

Counting integer partitions by size makes it easier to come up with combinatorial arguments that lead to useful identities and computational procedures. Specifically, when considering the size-$(m + 1)$ integer partitions of $n + 1$, we can distinguish two classes of them: (a) integer partitions in which one of the positive integers is 1, and (b) integer partitions in which all of the positive integers are greater than 1.

Each integer partition in class (a) can be formed by adjoining the integer 1 to a size-m integer partition of n; hence there will be $I(n, m)$ integer partitions in class (a).

Each integer partition in class (b) can be formed from a size-$(m + 1)$ integer partition of $n - m$, by adding 1 to each member of the bag. Hence there will be $I(n - m, m + 1)$ integer partitions in class (b).

Since these classes are mutually exclusive, and every size-m integer partition of n is a member of one or the other, we can conclude by the rule of the sum that

$$I(n + 1, m + 1) = I(n, m) + I(n - m, m + 1),$$

provided that n and m are natural numbers such that $m \leq n$.

To turn this identity into a recursive definition of I, we need to consider the base cases. The empty bag is the one and only integer partition of 0, so $I(0, 0) = 1$, and $I(0, m) = 0$ for any positive integer m. Every integer partition of a positive integer has to have at least one member, so $I(n, 0) = 0$ for any positive integer n. No integer n can be partitioned into more than
n parts, so $I(n, m) = 0$ when $n < m$. And, of course, there are no integer partitions of negative integers and none that have negative sizes.

The total number of integer partitions of n can then be computed as

$$\sum_{m=0}^{n} I(n, m).$$

As with Bell numbers, there is a recursive method for computing integer partition counts directly, first published by Leonhard Euler in 1741. Here’s how it looks in Scheme:

```
(define integer-partition-count
  (lambda (n)
    (if (zero? n)
        1
        (let kernel ((positive #t)
                      (index 1)
                      (upwards #f)
                      (so-far 0))
            (let ((offset (/ ((if upwards + -)
                             (* 3 index index)
                             index)
                         2)))
              (if (< n offset)
                  so-far
                  (kernel (if upwards (not positive) positive)
                          (if upwards (+ index 1) index)
                          (not upwards)
                          ((if positive + -)
                           so-far
                           (integer-partition-count
                            (- n offset))))))))
)
```

However, Euler didn’t find this method by a combinatorial argument, but rather in the course of studying infinite series. If you’re curious, Donald Knuth gives a full account in section 7.2.1.4 of *The Art of Computer Programming* (volume 4A, *Combinatorial Searching*), pages 395–403).
Exercises

1. Another pattern that you may have noticed in the Stirling numbers is that, for every natural number \(n \), \(S(n + 1, 2) = 2^n - 1 \). Give a combinatorial proof of this generalization.

2. Compute \(\tau_6 \) by hand.

3. List all of the integer partitions of 11 into four terms.

4. List all of the integer partitions of 8.