Lab: Proofs about Classes
CSC/MAT 208: Discrete Structures
Department of Computer Science
Department of Mathematics and Statistics
Grinnell College

Pairs

Here are the programmer pairs for today’s lab. Drivers are on the left.

- Ella Nicolson and Marcel Champagne
- Tyler Williams and Anita DeWitt
- Amanda Hinchman-Dominguez and Corey Simmonds
- Madeleine Goldman and Adam Wesely
- Samee Zahid and Devin Dooley
- Michael Owusu and Lindsey Byrne
- Danielle Williams and Jacob Ekstrand
- Matt Jasaitis and David Chang
- Jong Hoon Bae and Adam Hudson
- Kevin Connors and Linda Oyolu
- Dennis Chan and Bazil Mupisiri
- Julia Fay and Muhammad Hamza
- Thu Nguyen and Kathryn Yetter

Elizabeth Zak will replace anyone who is absent.

Exercises

Exercise 0: Prove that, for any classes $S$ and $T$, $S \cap T \subseteq S$.

Exercise 1: Prove the “identity of symmetric difference”: For any class $S$, $(S \triangle \emptyset = S)$.

Exercise 2: Using one of the heuristic rules explained on pages 2 and 3 of the “Combinatorial Problems” handout, show informally that, for any disjoint classes $S$ and $T$, $|S \cup T| = |S| + |T|$, and explain why the disjointness precondition is needed.
**Exercise 3:** Prove, using mathematical induction, that, for any class $S$ and any natural number $n$, $|S^n| = |S|^n$.

**Exercise 4:** Prove that, for any classes $S$ and $T$, $(S \cap T \parallel S - T)$. (Hint: Use *reductio ad absurdum*.)

**Exercise 5:** Prove that, for any classes $S$, $T$, and $U$, $((S \cup T) - U = (S - U) \cup (T - U))$. (Hint: Use a disjunctive syllogism.)

**Exercise 6:** Prove that, for any disjoint classes $S$ and $T$, every subclass of $S$ is disjoint from every subclass of $T$.

**Exercise 7:** Prove that, if a class $S$ has a subclass $T$ such that $T \neq S$ and $T \neq \emptyset$, then $|S| \geq 2$. 