Pairs

Here are the programmer pairs for today’s lab. Drivers are on the left.

- Julia Fay and Anita DeWitt
- Jacob Ekstrand and Marcel Champagne
- Kathryn Yetter and Devin Dooley
- Kevin Connors and David Chang
- Bazil Mupisiri and Amanda Hinchman-Dominguez
- Matt Jasaitis and Jong Hoon Bae
- Elizabeth Zak and Tyler Williams
- Michael Owusu and Madeleine Goldman
- Muhammad Hamza and Dennis Chan
- Linda Oyolu and Lindsey Byrne
- Danielle Williams and Thu Nguyen
- Samee Zahid and Adam Hudson
- Adam Wesely and Corey Simmonds

Ella Nicolson will replace anyone who is absent.

Exercises

In the following exercises, we define ‘m evenly divides n’ as meaning that there is some integer q such that $mq = n$.

Exercise 0: Let’s define a natural number as even if 2 evenly divides it. Prove that the sum of any two even numbers is even.

Exercise 1: Similarly, a natural number is odd if dividing it by 2 leaves a remainder of 1. Prove that the product of any two odd numbers is odd.

Exercise 2: Note that, for every natural number n, there is some natural number q such that either $n = 3q$, or $n = 3q + 1$, or $n = 3q + 2$. Taking this
observation as a premiss, prove that the *square* of every natural number \(n \), when divided by 3, leaves a remainder of either 0 or 1 (never a remainder of 2). Use the design pattern of disjunctive syllogism to help you set out this proof.

Exercise 3: Use the *reductio ad absurdum* design pattern to prove that there is no natural number \(n \) such that 51 evenly divides \(n \) but 17 does not.

Exercise 4: Use the “left to right, right to left” design pattern for biconditionals to prove that 15 evenly divides a natural number \(n \) if, and only if, both 3 and 5 evenly divide \(n \).

Exercise 5: Prove that, for any two natural numbers \(m \) and \(n \), if \(m \) evenly divides \(n \) and \(n \) evenly divides \(m \), then \(m = n \).