Permutations and combinations

CSC/MAT 208: Discrete Structures
Department of Computer Science
Department of Mathematics and Statistics
Grinnell College

Permutations

In the reading on mathematical induction, we proved that for any natural number \(n \), the number of sequences of length \(n \) that can be formed from \(n \) distinct values, without repetition, is \(n! \). These sequences are called the permutations of the values.

The inductive structure of the proof suggests a recursive algorithm for constructing the class of all the permutations of the members of a given class \(C \):

Base case: \(|C| = 0 \). Then the only permutation is \(() \), so the result should be \(\{ () \} \).

Recursive case: \(|C| = k + 1 \). Then \(C \) has one or more members, any of which can be the initial element in a permutation. For each member \(c \) of \(C \) in turn, use recursion to generate all the permutations of \(C \setminus \{ c \} \), then prepend \(c \) onto the front of each of those permutations. Collect the results for all the choices of \(c \) into one big class of sequences.

For very small classes \(C \), it is reasonable to implement this strategy in a procedure that returns the class of permutations as a value. Since the function \(n! \) grows very rapidly, however, the data structure quickly becomes unmanageable as \(|C| \) increases.

If we start with a bag \(B \) rather than a class, but still aim to compute the number of distinct permutations of the members of \(B \) (or to generate the class of all such permutations), we find that any repeated members in the bag reduces the number of different permutations. In fact, if the members of \(B \) include \(i \) different values with multiplicities \(m_0, m_1, \ldots, m_{i-1} \), then the number of permutations is

\[
\frac{(\sum_{j=0}^{i-1} m_j)!}{\prod_{j=0}^{i-1} m_j!}
\]
the factorial of the sum of the multiplicities, divided by the product of their factorials. For example, if $B = [a, a, a, b, b, c]$, then there are

$$\frac{(3 + 2 + 1)!}{3! \cdot 2! \cdot 1!} = \frac{720}{12} = 60$$

distinct permutations of the members of B.

Combinations

In the reading on combinatorial problems, where we first encountered binomial coefficients, we used them to count the number of different k-member committees that can be formed in an organization with n members. This is, of course, just a less intimidating way of stating the problem of counting the k-member subclasses of a class of cardinality n. The binomial coefficient $\binom{n}{k}$ gives the answer to this question.

The combinatorial proof of the law that $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$ suggests a recursive approach to building a class containing the k-member subclasses of a given class C:

Base case: $k = 0$. \emptyset is a zero-member subclass of any C, so the result should be {\emptyset}.

Recursive case: k is a successor. If C is empty, it is impossible for any subclass of C to have a positive number of members, so the result should be \emptyset. If C is not empty, then designate an element c of C, use recursion to generate all the $(k - 1)$-member subclasses of $C - \{c\}$, then drop c into each of those subclasses. Also, use recursion to generate all the k-member subclasses of $C - \{c\}$ (and refrain from dropping any additional values into them). The union of the results of these two recursions is the class of all k-member subclasses of C.
Exercises

1. Determine the number of permutations of the members of a class of cardinality 12.

2. Determine the number of eight-member subclasses of a class of cardinality 16.

3. Determine the number of distinct permutations of the members of the bag [red, red, red, orange, yellow, yellow, green, blue, blue, blue, blue].

4. Give a combinatorial argument for the law that

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n. \]

(Hint: What do the individual terms of the summation count?)