Applying Definitions

When the proposition that we are trying to prove contains a term that has an explicit definition, the last step in the proof is likely to be the application of that definition.

For example, we might be asked to prove that the empty class, \emptyset, is disjoint from every class S. This conclusion contains the term ‘disjoint’, which has an explicit definition: Two classes are disjoint if they have no members in common. This enables us to reconstruct the next-to-last step in the proof: If we could show that \emptyset and S have no members in common, applying the definition of ‘disjoint’ would give us exactly the conclusion that we want.

In this case, it’s straightforward to fill in the earlier steps in the proof: No matter what class S is, \emptyset and S have no members in common because \emptyset has no members at all in the first place. So you could set out the whole proof like this:

Since \emptyset has no members, \emptyset and S have no members in common no matter what class S is. Hence, by the definition of ‘disjoint’, \emptyset is disjoint from S. \blacksquare

We can also apply definitions when working downwards from the top of the proof. For example, if we have as a premiss of our proof the statement that S is disjoint from itself, and we are trying to use this premiss to reach the conclusion that S is the empty class, we can apply the definition of ‘disjoint’ to the premiss, to infer that S has no members in common with itself.

Again, it’s now straightforward to complete the proof: If S had any members, then those members would be “common” to S and S, contrary to the premiss; so S has no members, and the only class that has no members is \emptyset. The formal writeup might look like this:
Assuming that $S \parallel S$—that is, that S is disjoint from itself—it follows by the definition of ‘disjoint’ that S has no members in common with itself. Hence S has no members at all, because if it did have a member, that member would be common to S and itself, contrary to the assumption. So S is the empty class.

Conditional Proof

When the proposition that we are trying to prove is a conditional, connecting its *protasis* (a condition) to its *apodosis* (a statement that is true under that condition), we can arrange the proof by assuming the protasis as a premiss and using that premiss to demonstrate the apodosis. (A conditional, in this context, is an “if ... then ...” statement. The protasis is the clause introduced by ‘if’, and the apodosis is the clause introduced by ‘then’.)

For example, suppose that we are trying to prove that, for any classes A and B, $A \subseteq (A \cup B)$. Applying the definition of ‘\subseteq’ (as in the previous section), we see that we could prove this by showing, for any x, that if $x \in A$, then $x \in (A \cup B)$. The conditional form suggests that we should take ‘$x \in A$’ as a premiss and use it to help us prove that $x \in (A \cup B)$.

Filling in the intermediate steps then turns out just to be an application of the definition of ‘\cup’. We might write out this part of the proof formally like this:

Suppose that $x \in A$. Then clearly either $x \in A$ or $x \in B$. So, by the definition of ‘\cup’, $x \in (A \cup B)$.

Thus, for any x, if $x \in A$, then $x \in (A \cup B)$. Hence, by the definition of ‘\subseteq’, $A \subseteq (A \cup B)$.

Biconditionals

When the conclusion that we are trying to prove asserts that two statements are equivalent, or that one is true “if, and only if” the other is true, we can arrange the proof in two parts. In the first part, we take the first of the two statements as a premiss and use it to help us prove the second statement. In the second part, the statements reverse roles: We take the second statement as a premiss and use it to help us prove the first statement. It’s like two
conditional proofs in succession: Each of the statements is a condition for the truth of the other.

For example, we might be trying to prove that two classes A and B are equal if, and only if, their union is equal to their intersection: $A = B$ if, and only if, $(A \cup B) = (A \cap B)$. For the first part, we assume that $A = B$ and use that to establish that $(A \cup B) = (A \cap B)$. For the second part, we assume that $(A \cup B) = (A \cap B)$ and use that to prove that $A = B$.

It’s important to be clear, in each part, which statement you’re assuming and which one you’re trying to prove. In neither part are you allowed to assume the conclusion that you want to reach!

Here’s how the full writeup of the biconditional proof might go in this case:

Part 1 (“left to right”): Suppose that $A = B$, so that (by the definition of equality for classes) A and B have exactly the same members. Then every member of A is a member of both A and B, and so is every member of B (indeed, they are the same members!). So, by the definition of ‘∪’, every member of $(A \cup B)$ is a member of both A and B. Hence, by the definition of ‘∩’. every member of $(A \cup B)$ is a member of $(A \cap B)$. Moreover, it is clear that every member of $(A \cap B)$ is a member of A and so is also a member of $(A \cup B)$.

Part 2 (“right to left”): Suppose that $(A \cup B) = (A \cap B)$, and let x be any member of A. By the definition of ‘∪’, then, $x \in (A \cup B)$. Then, by our supposition, $x \in (A \cap B)$. But then, by the definition of ‘∩’, $x \in A$ and $x \in B$. Thus any member of A is also a member of B. By exactly similar reasoning, any member of B is a member of A, so that A and B have exactly the same members and so are equal.

Taking the two parts together, we conclude that $A = B$ if, and only if, $(A \cup B) = (A \cap B)$.

Chaining Conditionals

Sometimes the apodosis of one conditional premiss matches the protasis of another, in which case you can chain the conditionals and conclude that the new conditional formed from the protasis of the first and the apodosis of the
second is also true.

For example, to prove that the \subseteq relation is transitive, we might let A, B, and C be any three classes and assume as premisses that $A \subseteq B$ and $B \subseteq C$. To prove transitivity, we’d use these premisses to derive the conclusion that $A \subseteq C$.

In constructing the proof, we can apply the definition of ‘\subseteq’ both at the top, to the premisses, and at the bottom, to fill in the next-to-last step of the proof. At the top, applying the definition tells us that if x is a member of A, then x is a member of B, and that if x is a member of B, then x is a member of C. At the bottom, applying the definition tells us that we could get the conclusion we want by proving first that, if x is a member of A, then x is a member of C. But we can use conditional proof to show this:

Suppose that (a) $A \subseteq B$ and that (b) $B \subseteq C$. and let x be any member of A. By the definition of ‘\subseteq’ and premiss (a), if $x \in A$, then $x \in B$. So x is indeed a member of B. But then, by the definition of ‘\subseteq’ and premiss (b), if $x \in B$, then $x \in C$. So $x \in C$. Since x could be any member of A, it follows by the definition of ‘\subseteq’ that $A \subseteq C$. ■

In some cases, one can construct even longer chains of conditionals, with the apodosis of each matching the protasis of the next. The conclusion to be drawn from any such chain is the conditional connecting the protasis of the first conditional in the chain with the apodosis of the last.

Biconditionals can be chained in the same way, when the right side of each biconditional in the chain matches the left side of the next. The construction of the chain ensures that the left side of the first biconditional is equivalent to the right side of the last.

Reductio ad Absurdum

One way to prove a proposition, when its structure and the structures of the available premisses don’t suggest any particular strategy, is to try to disprove its negation. If we succeed in showing that the opposite of the conclusion we want to prove leads to contradictions or to conclusions that are inconsistent with our premisses, we can infer that that opposite proposition can’t be true, so that its negation — the conclusion we really want — must be true (because it’s the only alternative).

For example, we might use this proof design in showing that, for any
classes A and B, B is disjoint from $A - B$. Applying the definition of ‘disjoint’ at the bottom of the proof tells us that we could reach that conclusion if we could show that B has no members in common with $A - B$. To prove this by reductio ad absurdum, we would assume that, on the contrary, B does have members in common with $A - B$, and derive a contradiction. In this case, it’s straightforward to see the problem: If x were one of those common members, it would have to be a member of B and of $A - B$; but the definition of class difference would then require x not to be a member of B. It’s impossible to have it both ways, to say that x both is and is not a member of B, or our “contrary” assumption led to an impossibility — we “reduced it to an absurdity” (which is what the Latin name for this proof pattern means). Since the contrary assumption can’t be right, we draw the desired conclusion: B has no members in common with $A - B$, and so B is disjoint from $A - B$.

Disjunctive Syllogism

If we have a premiss that is a disjunction, asserting that one of two alternatives must be true (but without specifying each one), we can often construct a proof in two parts, one for each disjunct. In the first part, we’ll assume the first disjunct and show that, by itself, it can be used as the basis for a proof of the conclusion we’re trying to prove. In the second part, we’ll assume the second disjunct and show that it leads to the same conclusion. Since we get to the same place — the same conclusion — from either disjunct, we can infer that common conclusion from the disjunction itself without even knowing which disjunct is the true one in any given case.

For example, we might be trying to prove that the union of any two subclasses of a class C is itself a subclass of C (“If $A \subseteq C$ and $B \subseteq C$, then $(A \cup B) \subseteq C$”). Let x be any member of $(A \cup B)$. Then x is either a member of A or a member of B, but we don’t know which.

Case 1: $x \in A$. Then, since $A \subseteq C$, $x \in C$.

Case 2: $x \in B$. Then, since $B \subseteq C$, $x \in C$.

Since we get the same conclusion in either case, we conclude that $x \in C$ for any member x of $(A \cup B)$.
Exercises

1. Point out the use of \textit{reductio ad absurdum} in the “Applying Definitions” section at the beginning of the handout.

2. Suppose that we have a premiss specifying that one or another of seven different statements must be true, but we don’t know which one will apply in any given case. Explain how to adapt the “disjunctive syllogism” pattern to this situation.

3. Prove that, for any class A, $A \subseteq (A - \emptyset)$.

4. Prove that, for any classes A and B, if $A \parallel B$, then $A \triangle B = A \cup B$.