Cardinality

The *cardinality* \(|C|\) of a class \(C\) is the number of members of \(C\). When \(C\) is finite, as almost all of the classes that we will deal with are, \(|C|\) is a natural number. However, mathematicians have also given names to the cardinalities of some infinite classes, and proven some arithmetical relations among them. (For instance, the symbol ‘\(\aleph_0\)’ [read “aleph-null”] denotes the cardinality of the class of positive integers, ‘\(\mathfrak{c}\)’ denotes the cardinality of the class of real numbers, and it has been proven that \(\aleph_0 < \mathfrak{c}\)).) The arithmetic of infinite cardinals is interesting, but somewhat counterintuitive, so we’ll consider only finite classes in stating and proving assertions about cardinality.

When a class is specified by listing its members, we can determine its cardinality directly from its specification by counting (skipping over any duplicates):

\[
|\{\text{red, green, blue}\}| = 3,
|\{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5\}| = 7,
|\{\}\} = 0.
\]

However, when a class is specified by a membership condition, it is not always straightforward to determine its cardinality. When it is possible at all, we may need to bring considerable mathematical knowledge to bear in order to figure it out:

\[
|\{x \mid x \text{ is even and } x \text{ is prime}\} = 1,
|\{x \mid 1 \leq x \leq 120 \text{ and } x \text{ evenly divides 120}\} = 16.
\]

Some laws concerning cardinality are obvious or trivial to prove:
• $|\emptyset| = 0.$
• If $(S = T)$, then $|S| = |T|.$
• If $(S \subseteq T)$, then $|S| \leq |T|.$
• $(|S \cap T| \leq |S|)$
• $(|S| \leq |S \cup T|)$
• $(|S - T| \leq |S|)$

Here are two laws that are a little less obvious but still easy to prove:

$|S| = |S \cap T| + |S - T|.$ Proof: Let x be any member of S. If x is also a member of T, then, by the definition of ‘intersection’, $(x \in S \cap T)$; but, by the definition of ‘difference’, $(x \notin S - T)$. On the other hand, if x is not a member of T, then, by the definition of ‘intersection’, $(x \notin S \cap T)$; but, by the definition of ‘difference’, $(x \in S - T)$. Thus every member of S is either a member of $S \cap T$ or a member of $S - T$, but not both. Thus, in counting the members of S, we can tally each one either as a member of $S \cap T$ or a member of $S - T$, but not both. So the full tally of members of S is equal to the sum of the tallies of the members of $S \cap T$ and $S - T$, as required.

$|S| + |T| = |S \cup T| + |S \cap T|.$ Proof: In counting the members of S and then the members of T, we’ll encounter every member of $S \cup T$ at least once and every member of $S \cap T$ twice. In this process, if we also tally each item as a member of $S \cup T$ the first time we encounter it and as a member of $S \cap T$ if we encounter it a second time, we’ll do exactly one of these tallies at each step. So the sum of the full tally of members of S and the full tally of members of T is equal to the sum of the tallies of the members of $S \cup T$ and $S \cap T$.

Note that both of these proofs use the rule of the sum at a key point, adding the cardinalities of two disjoint classes. Indeed, the rule of the sum could itself be presented as a law concerning cardinality:

• If $(S \parallel T)$, then $|S \cup T| = |S| + |T|.$
Power classes

The *power class* of a class S, $\wp(S)$, is the class of all subclasses of S. For instance, for any values a and b, the power class of $\{a, b\}$ is $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$.

In constructing a subclass T of a given class S, we make a separate and independent decision about each member x of S, and each of these decisions can have either of two outcomes: either we include x as a member of T or we don’t. Since we have to make $|S|$ independent two-way decisions, there are $2^{|S|}$ ways of choosing members of S for the subclass T, each of which has a different result. So the number of possible subclasses of S is $2^{|S|}$; hence $|\wp(S)| = 2^{|S|}$.

Three other laws about power classes are worth mentioning:

- $(\wp(S \cap T) = \wp(S) \cap \wp(T))$
- $(\wp(S) \cup \wp(T) \subseteq \wp(S \cup T))$
- $(\wp(S - T) \subseteq \wp(S) - \wp(T))$

Cartesian products and powers

The *Cartesian product* $S \times T$ of classes S and T is the class of ordered pairs in which the first element is a member of S and the second a member of T:

$$S \times T = \{\langle s, t \rangle \mid (s \in S) \text{ and } (t \in T)\}$$

In constructing an ordered pair in which the first element is a member of S and the second a member of T, we make two separate and independent decisions, of which the first can be made in $|S|$ ways and the second in $|T|$ ways. Hence, by the rule of the product, there are $|S| \times |T|$ ways of choosing elements for the ordered pair, each of which has a different result. So $|S \times T| = |S| \cdot |T|$, which is one reason for the name.

We can extend the concept of the Cartesian product to apply to three or even more classes $S_0, S_1, \ldots S_{k-1}$: The Cartesian product $S_0 \times S_1 \times \ldots \times S_{k-1}$ is the class of all finite sequences of length k (often called “ordered k-tuples”) in which the initial element is a member of S_0, the second a member of S_1, and so on through the final element, which must be a member of S_{k-1}:

$$S_0 \times S_1 \times \ldots \times S_{k-1} =$$
$$\{\langle s_0, s_1, \ldots s_{k-1} \rangle \mid (s_0 \in S_0) \text{ and } (s_1 \in S_1) \text{ and } \ldots \text{ and } (s_{k-1} \in S_{k-1})\}$$
By reasoning about separate and independent choices, one can readily conclude that

$$|S_0 \times S_1 \times \ldots \times S_{k-1}| = |S_0| \cdot |S_1| \cdot \cdots \cdot |S_{k-1}|$$

When all of the classes $S_0, S_1, \ldots, S_{k-1}$ are equal, the product is called a *Cartesian power* and written as S^k: $S^2 = S \times S$, $S^3 = S \times S \times S$, and so on. As special cases, we also have

$$S^1 = \{\langle s \rangle \mid s \in S\}, \quad S^0 = \{\langle \rangle \}.$$

In other words, S^1 is the class of all “ordered 1-tuples” (single-element sequences) of members of S, and S^0 is the class of all “ordered 0-tuples” of members of S—the class whose only member is the empty list.

With these conventions, we have the pleasant cardinality law

$$|S^k| = |S|^k$$

which accounts for the name “Cartesian power.” This law is a special case of the cardinality law for extended Cartesian products, but it is also easy to prove it by mathematical induction on the exponent.
Exercises

1. Specify $\wp(\emptyset)$ by listing its members.

2. Compute $|\wp(\wp(\wp(\wp(\emptyset))))|.$

3. Prove that $(\wp(S \cap T) = \wp(S) \cap \wp(T)).$

4. Show that, for any classes S and T and any natural number $k,$

$$((S \cap T)^k = (S^k \cap T^k)).$$