Chapter 6

Relations and Functions

In the previous chapter, we explored the mathematical formalism of sets. Sets allow us to model collections of data which is one half of any computation. However, sets alone do not allow us to model structured data which is prevalent in any real-world data set. Structured data is called as such because the data in the collection is related in some way. For example:

- An element precedes another element in a list.
- A person is friends with another person in a social network.
- One number is a divisor of another number.

To model structured data, we need some way of modeling these relationships between individual datum. In this chapter, we use sets to develop the theory of relations which will allow us to formally reason about these relationships.

6.1 Definitions and Notation

Definition 1 (Relation). A relation R over a universe U is a subset of pairs of elements drawn from R, i.e.,

$$ R \in \mathcal{P}(U \times U). $$

Definition 2 (Relatedness). Suppose we have a relation R. An element of R, $(a, b) \in R$ denotes that a and b are related by R, written in several ways:

$$ (a, b) \in R $$

set notation

$$ R(a, b) $$

function notation

$$ a R b $$

infix notation

6.2 Operations Over Relations

Definition 3 (Domain). Let R be a relation. Define the domain of R, written dom(R), as:

$$ \text{dom}(R) = \{ x \mid \exists y. (x, y) \in R \}. $$
Definition 4 (Range). Let \(R \) be a relation. Define the range of \(R \) as:

\[\text{dom}(R) = \{ y \mid \exists x. (x, y) \in R \} \]

Definition 5 (Set Operations). Let \(R \) and \(S \) be two relations. Define the lifted operations over sets to relations as:

\[
\begin{align*}
R \cup S &= \{ (a, b) \mid (a, b) \in R \lor (a, b) \in S \} \\
R \cap S &= \{ (a, b) \mid (a, b) \in R \land (a, b) \in S \} \\
\overline{R} &= \{ (a, b) \mid (a, b) \notin R \}
\end{align*}
\]

Definition 6 (Inverse). Let \(R \) be a relation. Define the inverse of \(R \), written \(R^{-1} \), as:

\[R^{-1} = \{ (b, a) \mid (a, b) \in R \} \]

Definition 7 (Composition). Let \(R \) and \(S \) be relations. Define the composition of \(R \) and \(S \), written \(S \circ R \) as:

\[S \circ R = \{ (a, c) \mid (a, b) \in R, (b, c) \in S \} \]

Definition 8 (Image). Let \(R \) be a relation. Define the image of an element \(a \), written \(R(a) \), as:

\[R(a) = \{ b \mid (a, b) \in R \} \]

6.3 Properties of Relations

6.3.1 Equivalence Relations

Equivalence relations capture the notion of equality between objects in a universe.

Definition 9 (Reflexivity). A relation \(R \) is reflexive if it relates every element in the universe to itself.

\[\forall x. (x, x) \in R \]

Definition 10 (Symmetric). A relation \(R \) is symmetric if any pair of related elements is also related "in the opposite direction".

\[\forall x, y. (x, y) \in R \rightarrow (y, x) \in R \]

Definition 11 (Transitive). A relation \(R \) is transitive if whenever any pair of elements are related with a common element in the middle, the first and last elements are also related.

\[\forall x, y, z. (x, y) \in R \rightarrow (y, z) \in R \rightarrow (x, z) \in R \]

Definition 12 (Equivalence). A relation \(R \) is an equivalence if it is reflexive, symmetric, and transitive.
6.3. PROPERTIES OF RELATIONS

Proving Equivalences To formally show that a relation is an equivalence, we must show that it obeys each of the three properties of an equivalence. We show the outline of such a proof using an “obvious” equivalence relation: equality over the natural numbers.

Example 1. Let $R = (=)$, the equality relation over the natural numbers \mathbb{N}. Formally:

$$R = \{(n_1, n_2) \mid n_1, n_2 \in \mathbb{N}, n_1 = n_2\}$$

We claim that R is an equivalence relation.

Proof. To show that R is an equivalence relation, we must show that it is reflexive, symmetric, and transitive.

Reflexive Let $x \in \mathbb{N}$. From the definition of equality, it is clear that $x = x$, i.e., x is equal to itself.

Symmetric Let $x, y \in \mathbb{N}$ and $x = y$. Because $x = y$, from the definition of equality, they must be the same number, so $y = x$ as well.

Transitive Let $x, y, z \in \mathbb{N}$, $x = y$, and $y = z$. Because $x = y$ and $y = z$, from the definition of equality, we can conclude that x and y are the same number and y and z are the same number. From this, we can conclude that x and z are the same number, so $x = z$.

6.3.2 Totality and Uniqueness

Totality Totality concerns whether all the elements in the universe of some relation appear in the relation.

Definition 13 (Left-Total). A relation R is left-total if all elements are related by R on the left:

$$\forall x. \exists y. (x, y) \in R.$$

Definition 14 (Right-Total). A relation R is left-total if all elements are related by R on the right:

$$\forall y. \exists x. (x, y) \in R.$$

Uniqueness Uniqueness concerns whether an element is related to a single other element. The way that we express this property formally is that if an element is mapped to two elements, those two elements are in fact the same.

Definition 15 (Left-Unique). A relation R is left-unique if every element in the relation on the left-hand side is mapped to a unique element right.

$$\forall x, y, z. (x, y) \in R \rightarrow (z, y) \in R \rightarrow x = z.$$

Definition 16 (Right-Unique). A relation R is right-unique if every element in the relation on the right-hand side is mapped to a unique element on the left.

$$\forall x, y, z. (x, y) \in R \rightarrow (x, z) \in R \rightarrow y = z.$$
Refinements of Relations With totality and uniqueness defined, we finally define particular refinements relations in terms of these properties.

Definition 17 (Partial Function). A relation is a partial function if it is right-unique.

Definition 18 (Function). A relation is a function if it is both right-unique and left-total.

Definition 19 (Injective Function). A relation is an injective function if it is a function (right-unique and left-total) as well as left-unique.

Definition 20 (Surjective Function). A relation is a surjective function if it is a function (right-unique and left-total) as well as right-total.

Definition 21 (Bijection). A relation is a bijection if it is a function (right-unique and left-total) as well as injective and surjective (left-unique and right-total).