Chapter 7

Counting

7.1 The Sum and Product Rules

Definition 1 (Set Cardinality). Define the cardinality of a set $S$, written $|S|$, to be the number of elements contained in $S$.

Axiom 1 (Sum Rule). Let $S_1, \ldots, S_k$ be pairwise disjoint sets, i.e., $\forall s, t \in S_1, \ldots, S_k. s \cap t = \emptyset$. Then:

$$|S_1 \cup \ldots \cup S_k| = |S_1| + \ldots + |S_k|$$

We invoke the sum rule whenever we combine collections of elements that we wish to count.

Example 1. Suppose that we have five bananas, three apples, and two oranges. There are, therefore, $5 + 3 + 2 = 10$ fruits to choose from in total.

Axiom 2 (Product Rule). Let $S_1, \ldots, S_k$ be sets. Then:

$$|S_1 \times \ldots \times S_k| = |S_1| \ldots |S_k|$$

A useful way to view the cartesian product operator and, consequently, the product rule is in terms of choices rather than sets. Each of the $k$ sets of a cartesian product represents a different pool of elements to choose from. The cartesian product enumerates all the different ways we can generate a sequence of $k$ elements by choosing one element from each pool.

Example 2. Suppose that we have two hats, five shirts, three pairs of pants, and two pairs of shoes. The total number of outfits we can put together (consisting of a hat, shirt, pants, and shoes) is:

$$2 \times 5 \times 3 \times 2 = 60.$$ 

Alternatively, we can think of the problem as having four sets, one for hats, shirts, pants, and shoes. An outfit is, therefore, a 4-tuple with elements drawn from each of these sets. The cartesian product of these four sets then gives us all possible outfits as 4-tuples.

Claim 1 (Size of Power Sets). For any set $S$ with cardinality $k$, $|\mathcal{P}(S)| = 2^k$. 

Proof. The power set of $S$ contains all the possible subsets of $S$. Consider constructing one such subset. Each of the $k$ elements of $S$ can be either included in the subset or not. By the product rule, this means that the total number of possible such subsets we can construct is 

$$2 \cdot \ldots \cdot 2 = 2^k$$

Example 3. Suppose we have a piece of datum that is $k$ bits wide, e.g., 32 bits for an integer. Recall that a bit can either be set to 0 or 1. We can think of each integer as the collection of bits in the 32 bit sequence that are set 1. Since there are 32 bits in the collection, there must be $2^{32}$ such possible sets and thus $2^{32}$ possible integers.

7.2 Permutations and Combinations

Definition 2 (Sequence). A sequence is a collection of elements where the order is relevant. When writing down a sequence, we list the elements of the sequence separated by commas, e.g.,

$$x_1, x_2, \ldots, x_k$$

Note that a sequence or list literal differs from a set literal in the lack of curly braces surrounding the elements of the sequence.

Definition 3 (Permutation). A permutation of a set is the arrangement of the elements of that set into a sequence.

Claim 2 (Number of Permutations). The total number of permutations of a set $S$ with cardinality $k$ is:

$$k \cdot (k - 1) \cdot (k - 2) \cdot \ldots \cdot 2 \cdot 1 = k!$$

Proof. Consider a permutation of $S$. It contains $k$ slots filled with elements from $S$. The first slot has $k$ choices, the second slot has $k - 1$ choices (removing the element placed in the first slot from the pool), the third slot has $k - 2$ choices, and so forth until the last slot which has one choice left. By the product rule, the total number of possible permutations is given by $k!$ as described above.

Example 4. The number of possible permutations of a list of $k$ elements is $k!$. According to Stirling’s approximation, $k! = \sqrt{2\pi k} \left(\frac{k}{e}\right)^k$, so factorial grows very fast as $k$ grows (roughly exponential in $k$). Thus, any algorithm that requires us to search the space of all possible permutations of a collection of data is likely computationally infeasible in practice.

7.2.1 Repetition and Overcounting

Example 5. First consider the problem of counting sheep in a field.

Example 6. Consider counting the number of possible triangles formed by three distinct points, $A$, $B$, and $C$. What is different about this problem relative to counting permutations is that certain permutations are considered equal to each other. For example, the triangles:
are all really the same triangle because if we rotate the first triangle counterclockwise, we obtain the second triangle, and again for the third.

How do we count the number of such unique triangles? One way to do this is to first consider the possible permutations of the three points $A$, $B$, and $C$:

$$\begin{align*}
ABC & \quad BAC & \quad CAB \\
ACB & \quad BCA & \quad CBA
\end{align*}$$

We can think of each permutation as reading the points of the triangle counterclockwise starting from the left. Note that in this light, we have two sets of triangles that are equivalent.

$$\begin{align*}
ABC & = CAB = BCA \\
BAC & = CBA = ACB
\end{align*}$$

Thus, even though there are $3! = 6$ permutations of the three points, we only have two different triangles according to this definition:

$$\begin{align*}
A & \quad B & \quad C \\
C & \quad B & \quad A
\end{align*}$$

Note that with three possible nodes, we will generate three equivalent triangles, corresponding to the three ways we can shift the sequence one element to the right: $ABC$, $CAB$, $BCA$. To account for this redundancy, we can divide out the three expected equivalent triangles from each unique triangle that we generate, yielding:

$$\frac{6!}{3} = 2.$$ 

When we try to count a collection of objects, it is sometimes convenient to over-count and then remove the excess elements that do not meet our criteria. In the above example, the excess elements are equivalent triangles, and we know that for every triangle that we care to count, three equivalent triangles are introduced. To remove this redundancy, we divide accordingly.

### 7.2.2 Combinations

With this in mind, we can consider how to count the number of possible sets of size $k$ with elements drawn from a collection of $n$ elements. We alternatively call such a set a combination drawn from the
7.3 Inclusion-Exclusion

Principle 1 (Inclusion-Exclusion). The cardinality of the union of a set of sets \( S_1 \cup \ldots \cup S_k \), written \( |S_1 \cup \ldots \cup S_k| \), is given the sum of all the single sets, the difference of all the intersection of pairs of sets, the sum of all the intersection of triples of sets, and so forth.

Example 8. Consider the following statistics about college majors:

- There are 45 computer science majors.
- There are 20 math majors.
- There are 30 economics majors.
- There are 10 computer science and math double majors.
- There are 5 computer science and economics double majors.
- There are 5 math and economics double majors.
- There are 2 computer science, math, and economics triple majors.

Thus, the number of students that are either computer science, math, or economics majors is given by the combinatorial description:

\[
45 + 20 + 30 - 10 - 5 - 5 + 2
\]

Intuitively, adding up all the singleton sets of majors overcounts the double major overlap, so we subtract them out. But by subtracting out the double major overlap, we undercount the triple majors, so we add them back in.
7.4 Pigeonhole Principle

**Principle 2 (Pigeonhole).** If there are \( n \) elements to store in \( k \) bins with \( k < n \), then there must exist one of the bins with more than one element in it.

**Example 9.** There are approximately 5 million hair follicles on the human body. By the pigeonhole principle, at least two people in New York City, population approximately 8 million people, have exactly the same number of hair follicles.

7.5 Double Counting

One way we can establish that two combinatorial descriptions are equal is by showing that each description counts the same set of objects, but in two different ways.

**Example 10.** We derived the following equation for the binomial coefficient:

\[
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k}
\]

However, this is not the standard equation describing a binomial coefficient. To derive this standard equation, we can count the number of possible \( k \)-subsets drawn from a set of \( n \) elements as follows:

\[
\frac{n!}{k!(n-k)!}
\]

Consider a \( n \)-sequence drawn from the set of \( n \) elements. Now consider \( k \)-sets of elements contained in this sequence. How many times do we overcount this \( k \)-set inside the \( n \)-sequence? We first select a \( k \)-sequence that contains these elements, \( k! \) such possible sequences in all. When then select the remaining elements of the sequence, \( (n-k)! \) such possible sequences in all. We thus divide out the difference accordingly, obtaining the description above.

Because we have asserted that the two quantities count the same thing, we can conclude that they are equal, i.e.,

\[
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k} = \frac{n!}{k!(n-k)!}
\]

This final formula is the standard one for describing the binomial coefficient, but it is not the only alternative one! As a third alternative, note that when we choose our \( k \)-sequence in our original description, we left \( n-k \) elements unchosen. Rather than choosing the \( k \) elements directly, we can instead choose \( n-k \) elements up front, indirectly choosing the \( k \) elements of interest. We then divide out the number of possible permutations among this \( n-k \) set of elements, yielding:

\[
\binom{n}{k} = \frac{n \cdot (n-1) \cdot \ldots \cdot (k+1)}{(n-k)!}
\]

All three formulae accurately describe the ways of generating \( k \)-subsets from an \( n \)-set of elements, but in different ways.