This homework is due Wednesday 11/22 @ 10:30 PM
Please submit your solutions as a PDF (written in \LaTeX) to the instructor via Gradescope.

Problem 1 (Musical Chairs) Give combinatorial descriptions of the number of possible seating arrangements for five people labeled \(A, B, C, D,\) and \(E,\) in each of the given situations:

1. There are five seats.
2. There are seven seats.
3. There are five seats and \(B, D,\) and \(E\) must sit in this order in consecutive seats.
4. There are six seats and \(A\) and \(C\) must sit next to each other.
5. There are seven seats, \(A, B\) and \(E\) must sit next to each other, but \(C\) and \(D\) cannot sit next to each other.

Problem 2 (Graphs) A graph \(G\) is a mathematical structure formally defined as a pair \(G = (V, E)\) where \(V\) is a set of vertices and \(E\) is a set of edges. An edge is a pair \((v, u)\) with \(v, u \in V\) indicating that vertices \(v\) and \(u\) are connected in the graph. For example, in this simple graph:

![Graph Diagram]

We have \(G = (V, E)\) where:

\[
V = \{A, B, C, D, E\}
\]
\[
E = \{(A, B), (A, C), (A, D), (A, E), (D, D)\}
\]

For this problem, we will consider *undirected graphs* where the direction of the edge is irrelevant. Note that a vertex can have an edge to itself, e.g., \(D\) in the graph above. Also, vertices may be *unconnected* to the rest of the graph, e.g., \(F\).

(a) Give a combinatorial description of the amount of undirected graphs\(^1\) over an arbitrary set of vertices \(V\). (*Hint:* when the set of vertices of a graph are fixed, then the graph is determined by the set of edges it contains. How many possible such sets are there?)

(b) Let the *degree* of a vertex \(v,\) written \(\deg(v)\) be the number of edges that touch that vertex. Such an edge is an *incident edge* on the vertex \(v.\) For example, in the graph above \(\deg(A) = 4\) and \(\deg(D) = 3\). Prove the following claim

Claim 1 (The Handshake Lemma). \(\sum_{v \in V} \deg(v) = 2|E|\)

by arguing that both sides of the equality are counting the same set of values.

\(^1\)Technically, *labeled*, undirected graphs because we implicitly consider each vertex unique.
Problem 3 (Fact or Fiction) In a recent blog post\(^2\), Mozilla claims that the latest version of Firefox (Quantum, version 57) has

\[265,252,859,191,742,656,903,069,040,640,000\]

ways to customize the toolbar over the previous version of the browser. In a footnote of the blog post, the author explains the calculation in detail describing how the previous version of Firefox (version 56) has \(24! = 6.2 \times e^{23}\) possible configurations whereas version 57 has \(30! = 2.65 \times e^{32}\) possibilities. They then conclude that the number of additional possibilities in the latest version of Firefox is simply \(30! - 24!\).

Let’s define a toolbar configuration as an arrangement of the possible toolbar items that Firefox provides. Let’s further assume for the sake of simplification that the number of possible configurations for the previous version of Firefox is indeed correct. Is the claim in Mozilla’s blog post correct? Justify your answer constructively by giving a combinatorial argument for or against the claim. Note that if you try to refute the claim, your proof, by virtue of being constructive, should counter-claim and justify an alternative number of possible configurations.

You will need to install the latest version of Firefox to answer this question. You can access the toolbar customization menu by right-clicking on an empty part of the toolbar. Think of the toolbar as a sequence of possible items drawn from the customization menu. Play around with the browser to get a sense of what arrangements are possible; note that there may be some restrictions to placement of particular items. In your proof, take care to state any assumptions about how you believe the customization works, in particular, the restrictions that you discover in your exploration.

\(^2\)https://blog.mozilla.org/firefox/the-new-firefox-by-the-numbers/