For each problem, please indicate how much time you spent on it.

Problem 1
Let A, B, C, D be languages such that $A, B \in P$ and let $C, D \in NP$. For each of the following statements, indicate whether the statement is true or false and justify your answer.

a) $A \cup B \in P$

b) $C \cap D \in NP$

c) $\overline{A} \in P$

Problem 2
Recall that a *simple path from* x *to* y in an undirected graph $G = (V, E)$ is a sequence of adjacent vertices that begins with x, ends with y, and which no intermediate vertex appears twice. Define the language

$\text{PATH}_{\text{SHORT}} = \{(G, x, y, k) \mid G \text{ is an undirected graph and contains }$

$a \text{ simple path from } x \text{ to } y \text{ of length at most } k\}.$

Prove that $\text{PATH}_{\text{SHORT}}$ is in the class P by giving a polynomial-time Turing machine that decides it.

Problem 3
Define the language

$\text{PATH}_{\text{LONG}} = \{(G, x, y, k) \mid G \text{ contains a simple path}$

$\text{ from } x \text{ to } y \text{ of length at least } k\}.$

Prove that $\text{PATH}_{\text{LONG}}$ is NP-complete.
Problem 4

Let U be a finite set called a universe set, and let $S = \{S_1, \ldots, S_n\}$ be a finite collection of sets such that $S_i \subseteq U$ for each $1 \leq i \leq n$. We call S a family of subsets over universe U.

A sub-family $C \subseteq S$ is U-total if

$$U = \bigcup_{S_i \in C} S_i.$$

In other words, every element of U is contained in one of the sets S_i in the sub-family C. For example, if $U = \{1, 2, 3, 4\}$ and $S = \{\{1, 2\}, \{3\}, \{4\}, \{3, 4\}\}$, then the set $C = \{\{1, 2\}, \{3, 4\}\}$ is U-total since its subsets totally cover the elements in U. However, if $C = \{\{3, 4\}, \{3\}, \{4\}\}$, it is not U-total since the elements 3 and 4 are not included in any subset of C.

Define the set

$$U\text{-TOTAL} = \{\langle U, S, k \rangle \mid S \text{ has a } U\text{-total sub-family of size } k\}.$$

Prove that $U\text{-TOTAL}$ is NP-complete.

Bonus Problem:

Let $\{0, 1\}$ be the alphabet for this problem. Define the bounded acceptance problem to be the language

$$B_{TM} = \{\langle M, w, k \rangle \mid M \text{ is a TM and accepts } w \text{ in at most } k \text{ steps}\}$$

where k is a number encoded in binary.

For each of the following statements, indicate whether the statement is true or false and justify your answer.

a) $B_{TM} \in P$

b) $B_{TM} \in NP$