For each problem, please indicate how much time you spent on it.

Problem 1
Prove that the language

$\text{DEAD} = \{ \langle M, q \rangle \mid M \text{ is a TM and } q \text{ is a state of } M \text{ that is never used} \}$

is undecidable. Note that “never used” simply means that M never enters the state q on any input.

Problem 2
Let $\text{FINITE}_{\text{TM}}$ be the language

$\text{FINITE}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is finite} \}$.

Prove that $\text{FINITE}_{\text{TM}}$ is undecidable.

Problem 3
We have seen that EQ_{DFA} is decidable and EQ_{TM} is undecidable. Let EQ_{TD} be the language

$\text{EQ}_{\text{TD}} = \{ \langle M, D \rangle \mid M \text{ is a TM, } D \text{ is a DFA, and } L(M) = L(D) \}$.

Prove that EQ_{TD} is undecidable using a mapping reduction.

Problem 4
Prove or disprove each of the following statements about the relation \leq_m.

a) \leq_m is reflexive
b) \leq_m is symmetric
c) \leq_m is transitive

A proof of the affirmative should include the reduction function and the Turing machine that computes it. A disproof should include a counterexample and an argument why the example causes the statement to fail.
Bonus Problem: How many 1s can we write?

Let $\Gamma = \{0, 1, \sqcup\}$ be the tape alphabet for all TMs in this problem. For $k \in \mathbb{N}$, let H_k be the set of all TMs that have exactly k states and halt on ϵ. For each $\langle M \rangle \in H_k$, let $\#1(M)$ be the number of 1s left on M’s tape after running to completion on ϵ.

Define the function $f : \mathbb{N} \rightarrow \mathbb{N}$ as

$$f(k) = \max\{\#1(M) \mid \langle M \rangle \in H_k\}.$$

In other words, $f(k)$ is the maximum number of 1s any k-state TM can possibly write to its tape and not get into an infinite loop.

Prove that f is not a computable function.