Problem 1

Prove that the language

\[\text{DEAD} = \{ \langle M, q \rangle \mid M \text{ is a TM and } q \text{ is a state of } M \text{ that is never used} \} \]

is undecidable. Note that “never used” simply means that \(M \) never enters the state \(q \) on any input.

Problem 2

Let \(\text{FINITE}_{\text{TM}} \) be the language

\[\text{FINITE}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is finite} \} \]

Prove that \(\text{FINITE}_{\text{TM}} \) is undecidable.

Problem 3

We have seen that \(\text{EQ}_{\text{DFA}} \) is decidable and \(\text{EQ}_{\text{TM}} \) is undecidable. Let \(\text{EQ}_{\text{TD}} \) be the language

\[\text{EQ}_{\text{TD}} = \{ \langle M, D \rangle \mid M \text{ is a TM, } D \text{ is a DFA, and } L(M) = L(D) \} \]

Prove that \(\text{EQ}_{\text{TD}} \) is undecidable using a mapping reduction.

Problem 4

Prove or disprove each of the following statements about the relation \(\leq_m \).

a) \(\leq_m \) is reflexive

b) \(\leq_m \) is symmetric

c) \(\leq_m \) is transitive

A proof of the affirmative should include the reduction function and the Turing machine that computes it. A disproof should include a counterexample and an argument why the example causes the statement to fail.
Bonus Problem: How many 1s can we write?

Let $\Gamma = \{0, 1, \sqcup\}$ be the tape alphabet for all TMs in this problem. For $k \in \mathbb{N}$, let H_k be the set of all TMs that have exactly k states and halt on ϵ. For each $\langle M \rangle \in H_k$, let $\#1(M)$ be the number of 1s left on M’s tape after running to completion on ϵ.

Define the function $f : \mathbb{N} \rightarrow \mathbb{N}$ as

$$f(k) = \max\{\#1(M) \mid \langle M \rangle \in H_k\}.$$

In other words, $f(k)$ is the maximum number of 1s any k-state TM can possibly write to its tape and not get into an infinite loop.

Prove that f is not a computable function.