For each problem, please indicate how much time you spent on it.

This assignment is all about designing and working with Turing machines. Many of the problems require you construct a Turing machine to decide or recognize a language. The format required for these constructions is the simulator used in class:

http://morphett.info/turing/turing.html

(Remember that you need to select “semi-infinite tape” as the variant.)

The code for these Turing machines must be emailed as a zip archive attachment to klingeti@grinnell.edu by 1:00pm of the deadline. Please name the archive username-hw5.zip and the files: username-hw5-p1.txt for “problem 1” where username is your Grinnell username. (You are also encouraged to comment your Turing machine code to give insight into how it works.)

Problem 1
Consider the language \(A = \{abb\} \) over the alphabet \(\Sigma = \{a, b\} \). (Yes this language contains a single string.)

a) Construct a Turing machine that decides \(A \).

b) Draw the diagram for your Turing machine in the same format as the textbook.

Please include your drawing as an image in your submission named username-hw5-p1.ext where ext is the image file format of your choice. (Note you could simply take a picture of your drawing for full credit.)

Problem 2
Let \(\Sigma = \{0, 1\} \) be the alphabet for this problem. Construct a Turing machine that decides the language

\[B = \{0^n1^n0^n \mid n \geq 0\}. \]
Problem 3
Let $\Sigma = \{0, 1\}$ be the input alphabet for this problem. Recall that the self-delimited pair of two bit strings x and y is the string

$$p(x, y) = 0^{|x|} 1 xy.$$

Construct a Turing machine that interprets its input as a self-delimited pair of strings $p(x, y)$ and then outputs the string x. By “output,” we mean that when the Turing machine halts, the only non-blank symbols left on the tape forms the string x. (Note that blank spaces to the left of x are permitted.)

Hint: Read Problem 4 before starting this problem, so you can write your Turing machine in a reusable way.

Problem 4
Construct a Turing machine that interprets its input as a self-delimited pair of strings $p(x, y)$ and then outputs the string y.

Bonus Problem: Computing the minimum
Construct a Turing machine that interprets its input as a self-delimited pair of strings $p(x, y)$ and then outputs the minimum of x and y. Note that your solution should support leading zeros, and you may assume that x and y are not the empty string. (Note the values being compared are the unsigned integer values of the bits of x and y.)