For each problem, please indicate how much time you spent on it.

Problem 1
Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{+, \times, -, \div\}$ be an alphabet.

A string $w \in \Sigma^*$ is called a simple numeric expression if it is in one of the following two forms.

1. w consists of one or more digits with no leading zeros.

2. $w = w_1 \otimes w_2$ where w_1 and w_2 are also simple numeric expressions and $\otimes \in \{+, \times, -, \div\}$.

Therefore 1074 is a simple numeric expression of the first kind; 50 + 7 is a simple numeric expression of the second kind; and $2 - 700 \times 8 \div 10$ is also a simple numeric expression because of its recursive definition.

Let $S \subseteq \Sigma^*$ be the set of all such simple numeric expressions. We also note that $0 \in S$ because 0 is a digit without any leading zeros.

a) Give a regular expression that recognizes S.

b) Give a DFA or an NFA that recognizes S.

Problem 2
Let Σ be the alphabet from Problem 1, and let $\hat{\Sigma} = \Sigma \cup \{(,\)}$ (thus $\hat{\Sigma}$ contains all the elements of Σ along with the left- and right-parentheses). A string $w \in \hat{\Sigma}^*$ is called a numeric expression if it is in one of the following two forms.

1. w is a simple numeric expression (i.e., of the form in problem 1), or

2. $w = (x)$ where $x \in \hat{\Sigma}^*$ is also a numeric expression.

Note that all simple numeric expressions are trivially numeric expressions (because of the first form). However, we can now have expressions with parentheses such as $(2 - 700) \times 8 \div 10$ and $((1 + 2) \times (3 + 4))$.

Let $N \subseteq \hat{\Sigma}^*$ be the set of all such numeric expressions. Prove that N is not regular using the pumping lemma.
Problem 3
Let Σ be an alphabet and let \(w \in \Sigma^* \) be a string. We write \(w^R \) to denote the reverse of \(w \), i.e., if
\[
w = a_1a_2a_3 \cdots a_n
\]
where \(a_i \in \Sigma \) for each \(1 \leq i \leq n \), then
\[
w^R = a_na_{n-1} \cdots a_1.
\]
If \(A \subseteq \Sigma^* \) is a language, we also define the reverse of \(A \) to be
\[
A^R = \{ w^R \mid w \in A \}.
\]
Prove that the class of regular languages is closed under the reverse operator.

Problem 4
Let \(E \) be the language of all evenly lengthed bit strings. Therefore, \(0111 \in E \), but \(000 \notin E \). (Note that \(\epsilon \in E \) because we count 0 as an even number.)
a) Prove or disprove that \(E \circ E^R \) is regular.
b) Prove or disprove that \(\hat{E} = \{ ww^R \mid w \in E \} \) is regular.
c) Explain in your own words the difference between the languages \(E \circ E^R \) and \(\hat{E} \) and why one is regular and the other is not.
(Note that if you give a disproof, you must use the pumping lemma.)

Bonus Problem: Prefixes
We say a string \(x \in \Sigma^* \) is a prefix of a string \(y \in \Sigma^* \), and we write \(x \sqsubseteq y \), if \(y = xz \) for some string \(z \in \Sigma^* \).
We define the set operators \(P_1 \) and \(P_2 \) by
\[
P_1(A) = \{ x \in \Sigma^* \mid y \sqsubseteq x \text{ for some } y \in A \}
\]
\[
P_2(A) = \{ x \in \Sigma^* \mid x \sqsubseteq y \text{ for some } y \in A \}
\]
for all languages \(A \subseteq \Sigma^* \).
a) Prove or disprove that the set of regular languages is closed under \(P_1 \).
b) Prove or disprove that the set of regular languages is closed under \(P_2 \).